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A NOTE ON YIELD POINT PHENOMENON IN
WAVE PROPAGATION

JAMES M. KELLY

Division of Structural Engineering and Structural Mechanics, University of California, Berkeley, California

Abstract-The propagation of stress pulses in a plastic material which exhibits delayed yielding and upper
and lower yield points is considered by the method of expansion behind the wave front. The material model
includes an evolutionary equation the presence of which is responsible for the yield phenomena and it is shown
that it also leads to a very pronounced negative stress gradient behind the wave front.

INTRODUCTION

THE upper yield point and subsequent yield drop is a very familiar pbenomenon in the
tension testing of annealed mild steel. It is clearly related to the less familiar phenomenon
of the yield delay time which arises when a stress in excess of the yield stress is instan­
taneously applied to a specimen and held constant. There is a delay in the development
of plastic strain which may amount to several msec when the applied stress is around
double the yield stress. The delay time appears to have been first observed by Hopkinson [1]
and has been studied experimentally by a number of people, for example Clark and
Wood [2J, Krafft and Sullivan [3J and Campbell and Marsh [4J. It has never been clear
how this yield delay time might affect the propagation of a stress wave in such a material.
It is fairly easy to show that the rate independent (Karman-Taylor-Rakhmatulin) theory
[5J of elastic plastic wave propagation cannot incorporate this effect. On the other hand
the rate dependent (Malvern-Sokolovsky) theory [6J, predicts that the decay in intensity
of the wave front stress is given by the plastic strain rate immediately behind the wave.
Thus any non-zero yield delay time would preclude an erosion ofthe stress wave. However
a decay in the initial wave front with distance of propagation has been observed in waves
of uniaxial strain in iron by Taylor and Rice [7]. Associated with this decay in the initial
stress Taylor and Rice observed a stress drop behind the wave front before a smooth
rise in stress to a maximum some distance behind the front. A stress drop behind the wave
front has also been observed in commercially pure aluminum by Barker et al. [8J, again
under uniaxial strain conditions. This is surprising in that neither yield drop nor delay
time effects appear to have been observed in aluminum. The time associated with the stress
drop observed in [8J is around 6 x 10- 8 sec and few apparata used in stress strain measure­
ments have this degree of time resolution.

One of the most satisfactory explanations of the yield drop and the delayed yield
phenomenon has been given in a series of papers by Gilman and his coworkers (see for
example [9J). This explanation is based on the concept of dislocation multiplication. In
the annealed material the dislocation density is low (106 cm/cm3

) and increases extremely
rapidly with plastic strain. It is the purpose of this note to use the constitutive theory
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which arises from the dislocation multiplication approach in studying the propagation
of stress waves in a material exhibiting the delayed yield phenomenon. For the purpose
of this note the theory will be developed for rod waves merely to simplify the computations.
The interested reader will have no difficulty in generating the appropriate solutions for
uniaxial plane waves, spherical waves or cylindrical waves.

ANALYSIS

We consider here a straight thin rod modeled by the positive real line 0 ::; x < 00.

The rod is initially undisturbed and a stress history O"*(t), t Z 0 is imposed on x = o.
The displacement from the initial position of the particle at point x will be denoted by
u(x, t) and the displacement gradient Ux by e(x, t). The mass density of the material will
be assumed uniform in the initial configuration and denoted by p. The motion of the rod
in regions where the displacement is defined and continuously differentiable is governed
by the equation

O"x = pUtt (1)

where O"(x, t) is the stress and partial differentiation is indicated by subscripts. The response
of the material will be based on the following model. The displacement gradient e will
be assumed divisible in two parts, ee, eP ; the elastic part ee related to the stress through
ee = O"/Y with Yan elastic modulus and the plastic part eP given by a strain rate equation
of the form

e; = bNv (2)

(3)

where the three terms on the right hand side have the following physical interpretation;
b is a Burgers vector, N a dislocation density and v a dislocation velocity. The density N
is given by an evolutionary rate equation

. Nv
N =-.-,

A

where A. is a mean free path for dislocation multiplication. Taken together these equations
predict a linear increase in N with plastic strain when ef is one signed, i.e.

(4)

The dislocation velocity v is generally taken to depend on stress and a number of different
forms have been suggested; here we will use a power law form

v=vo(:or
where Vo and 0"0 are normalizing constants with the dimensions of velocity and stress
respectively. When the exponent n is large (20-50) the material model is not very rate
sensitive.

The response of the material is thus specified by the equations

(5)



and
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er = bNO( 1+b;~JVO(~r (6)

Equations similar to (5) and (6) have been studied in detail by Gilman [9] in application
to certain quasi-static loading situations, and he has shown that this material model can
predict a yield drop in constant strain rate tests and delayed yield in constant stress tests
when appropriate values are given to the parameters No, A, band n.

A material model of this kind predicts an instantaneous elastic response and thus at a
fixed position x the rod is at rest until a time-t-x/c where c = (Y/p)t is the (constant)
wave velocity. We will be interested here in obtaining a solution for the stress at a fixed
position as a Taylor series about the time of arrival,

et:J I ( x)m Ia(x, t) = L ,t-- aIm II

m=O m. c I=xjc

where the notation a,m refers to oma/ot"'. Solutions of this kind have been developed for the
linearly viscoelastic material by Achenbach and Reddy [10] and it will be the purpose of
this note to apply their technique to this model.

In what follows we will assume that a*(t) has no discontinuities of any order for t > 0
and may be expanded as a MacLaurin series

et:J 1 Ia*(t) = L ,t"'alm .
m=O m. 1=0

It follows that at any time t > 0 the line 0 ~ x < 00 is divided into two parts R + ; 0 ~ x < et
and R- ; et < x < 00. Let I(x, t) be a function defined and continuously differentiable
in R +, R - which approaches definite limits I + and I - as x approaches et from within
R+ and R - respectively. The jump inl across the common boundary point will be denoted
and defined by

The condition of compatibility of the propagating jump is, [11],

d
dt [f] = [ft] +e[/x] .

On the assumption that the displacement u is continuous we obtain

[uIJ+e[e] = o.

(7)

(8)

From this and the dynamical condition across a discontinuity of stress and particle
velocity

we obtain

[a]
pe

2 = [e] = Y,

(9)

(10)
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where, to establish [c:PJ = 0 it has been noted that c:f as a function of c:P and a is bounded
for all finite values of these variables.

Following Achenbach and Reddy [10J we apply the condition of compatibility (7)
to arm and to pCUrm + 1, m > O. Subtraction of the resulting expressions gives

(11)

Now

so that

leading to the final result

d d2

2dt [armJ = dt2 [arm - lJ - Y[c:fm + 1].

When m = 0 use of (9) with (11) gives

d
2dt[aJ = - Y[c:fJ.

(12)

(13)

It will be convenient to carry out the subsequent analysis in dimensionless variables.
To this end we identify the characteristic time r and the constant rx associated with the
rate equation (6)

and define T = tit. Also we define

S = alao;

The material response equations (5) and (6) become

EP = (E-S)

Ef = (1 + rxEP) V

and the decay equations (13) and (12) take the form

2:
t

[SJ = -[EfJ

d d2

2dt[STmJ = dT 2 [STm-1J - [Efm+ lJ

with

[EPJ = O.

(14)

(15)

(16)
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SOLUTIONS

For m = 0 the solution is obtained as

where

[S]o = 0'*(0)/0'0 = So.

For m = 1 equation (15) takes the form

2d~[ST] = d~2[S]-(XEfs+"-ns+"-ls;

or

A suitable integrating factor for this equation is e~/2 where

e= f: VS<S+(T'» dT'

in terms of which the solution takes the form

S; = [ST] = e-~/2[ST]O-e-~/2 f: e+~(T')/2~ d~'V(S+(T'))dT'

_~e-~/2 f: e+~(T')/2V2(S+(T'»dT'.

We note that

e= f: Vs(S+(T'»dT' = -2 f:+ Vs(~;l:)S+

= -21n VIVo where VO = (SO)".

Thus e~/2 = VOIV and after some manipulation we find that

[ST] = V~:) [ST]O-~V(S+) In V~o+) +aV(S+)(S+ -SO).
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(18)

(19)

(20)

(21)

The computation has reached the point of diminishing returns at n = 2. The equation
for arbitrary n is

where
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The formal solution is

JAMES M. KELLY

1 v+ iT V
O

-- - -G"(T')dT'
2 VO 0 V+

with V+ VS+(T) given by equation (17). For a step input, where 0"1(0) = 0, 0"*(0) > 0
formula (17) indicates that for IX = 0 the slope behind the wave front is positive for all T
and if IX and So are such that 4IXSo :::; n the slope behind the wave front is again positive for
all T. For 4IXSo > n the slope is initially negative but in all cases becomes positive for T
large enough. It is interesting to note that although the decay curve for S is very insensitive
to the value of So (for values of n around 10 and over and So > 1) the form of curve for ST
is very sensitive to the value of So.

In Fig. 1 the decay in S and the variation of ST are shown for the case where So = 2
with n = 10 and IX = 100. The implication of the solution with respect to the wave profiles
at various times is also shown in this figure.

It is clear from Fig. 1 that the dislocation multiplication factor leads to an extremely
rapid drop in the stress immediately behind the wave. It is known that the decay or ampli­
fication of a shock wave in a non-linearly elastic material is strongly influenced by the
sign of the stress rate immediately behind the wave. The effect of elastic non-linearity
will be of considerable importance in the case of plane wave propagation as in the plate
slap experiment. Here the large volumetric deformation leads to non-linear elastic response.
This effect has been discussed by Herrmann [13) for metals and by Schuler [14) for poly­
methyl methacrylate. This effect clearly delimits the range of applicability of the present
results.

t-t----+------+------+---J2·00

s

H:t----~-E+-----+'+------M----JI·OO

o LO:-.O::::O:-::2----;:;-O-;;.07::IO,------;O~.O~2~O-----;:;O.*03:;-;O,-----'

T

FIG. L
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AfiCTpaKT-MCCJIe,l:\yeTclI, MeTO,l:\OM pa3JIOlKeHHlI 3a «!JPOHTOM BOJIHbl, pacnpocTpaHeHHe HMnyJIbCa
HanplilKeHHlI B nnaCTH'IecKOM MaTepHaJIe, KOTOPbIA npOllBJIlieT 3ana3,l:\bIBaHHe Ha'laJIa Te'leHHlI H BepxHeit
H HHlKHeit TO'leK Te'leHHlI.

MO)l.eJIb MaTepHaJIa 3aKJIIO'IaeT BbIe)l.eHHoe ypaBHeHHe, HaJlH'IHe KOToporo OKa3bIBaeTCli OTBecTBeHHbIM
)I.Jlll lIBJIeHHlt TeKy'lecTH. OKa3bIBaeTcSI, TaXlKe, 'ITO 3TO Be)l.eT K caMoMy onpe.n:eJleHHOMY rpa)l.HeHTY
HanplilKeHHA 3a «!JPOHTOM BOJlHbI.


